

ICE General Presentation prepared for EMSHIP SAB

FEBRUARY 2017

International Contract Engineering Ltd. (ICE Group) | www.icedesign.info

ICE in a Nutshell

- Europe's largest independent ship design group
- In business 50 years, clients world-wide
- Conceptual, basic/Class and detail design, in all marine design disciplines
- 700,000 professional man-hours / year (2014)
- Offshore energy, commercial and naval ship design

Ship Design Markets

Commercial Marine

Defence

Offshore Oil & Gas

Location of ICE Offices & Projects

3

ICE Main Design Facilities – Aerial View

ICE Main Design Office

5

ICE Typical Project Room

6

Labour Resources (2014 peak)

-	

	Structural Analysis	Hull	Outfit & Deck Outfit	Machinery & Piping	Electrical	Naval Archit.	TOTAL		
Department Managers	1	1	1	1	1	1	6		
Senior Engineer	5	14	11	17	7	3	57		
Principal Engineer	2	18	21	26	18	1	86		
Engineer	6	11	26	41	28	4	116		
Junior Engineer	2	4	5	16	18	0	45		
Draftsman	0	1	0	0	1	0	2		
Checker	0	0	0	3	1	0	4		
Subcontractor	0	15	15	21	8	1	60		
Total Design Staff	otal Design Staff 16 64 79 125 82 10 3								
Doc. Controllers									
AVEVA Marine Software Administration 3									
Quality Engineers (all Naval Architects or Engineers) 4									
Planners (all Naval Architects or Engineers)									
Project Managers (all Naval Architects or Engineers) 5									
Total Project Resources									
Management									
Administrativ Staff									
Total Management & Administrative Staff									
Total ICE Employment									

Minumum Qualification Requirement :

Senior Engineer	- University Graduates with over 12 years experience.
Principal Engineer	- University Graduates with 8 to 12 years experience.
Engineer	- University Graduates with 2 to 8 years experience.
Junior Engineer	- University Graduates with up to 2 years experience.

ICE Ship Design Scope

ICE Design Software Tools

- AVEVA Marine 12
- Autodesk AutoCad
- Siemens UGS Femap NX for Nastran
- CSI SAP2000

9

- Napa System
- Intergraph Caesar II
- Intergraph SmartPlant Instrumentation
- PipingSolutions Triflex
- Sunrise Systems Pipenet
- Zeataline Projects PipeData-PRO
- OTI ETAP
- McNeel Rhinoceros, Flamingo
- HydroComp NavCad
- PTC MathCad
- Shipflow + Tecplot
- ShipWeight

- BD, DD, Prod. Info.
- All design stages
- **CD**, **BD** & **DD**
- **BD** & **DD**
- CD & BD
- DD
- **BD** & **DD**
- DD
- **BD** & **DD**
- DD
- BD
- CD
- CD & BD
- All design stages
- CD
- CD & BD

AVEV

Legend: **CD** = Concept Design; **BD** = Basic Design; **DD** = Details Design

Cruise Vessels & Ferries -Sample Projects

10

• ICE has over the last decade been involved in a number of passenger ship design projects ranging from the world's largest cruise vessels to fast ferries, RoPax ferries and luxury yachts.

Cruise Ship "MSC Fantasia" A33

Class: BV Tonnage: 137,936 GT Capacity: 3,900 passengers Crew: 1,313

Year: 2006 -07 Shipyard: STX Europe, France Operator: MSC Cruises

ICE Scope of Work:

- Basic & detail design for hull structure;
- Lifting and turning calculations and reports (including drawings);
- Coordination drawings for piping and outfitting (selected zones);
- Production information plates and profiles specifications, assembling drawings and cutting information;
- Production information material specifications, penetration lists and isometric sketches;
- Detail design for HVAC.

Cruise Ship "MSC Fantasia" A33

12

3-D PlantSpace Model – piping, HVAC & electrical systems coordination drawings

Ro-Ro Passenger Ferry "Cote des Flandres" (ex- Berlioz) O32

Class: BV Tonnage: 33,796 GT Capacity: 1900 passengers, 2000 lane metres (120 lorries or 700 cars)

Year: 2003 -04 Shipyard: STX Europe, France Operator: DFDS Seaways France

ICE Scope of Work:

13

- Detail design for hull structure for the entire vessel (incl. workshop drawings and production information);
- Machinery & tank area: detail design (piping with DN ≥ 25 mm, HVAC, cable trays, hull outfitting, foundations, floors, beams & padeyes for equipment handling) for the entire length of the vessel (incl. casings and funnels).

Ro-Ro Passenger Ferry "Cote des Flandres" (ex- Berlioz) O32

ICE Property Design 32,000 dwt Bulk Carrier

Main Characteristics: Deadweight, design: 32,000 t; Length o.a.: 182.5 m; Breadth mld.: 29.0 m; Draught, design: 9.85 m; Speed, service: 14 kn

32,000 dwt Double Hull Bulk Carrier

Conceptual, tank testing and basic design for a 32,000 dwt Double Hull Bulk Carrier; Year: 2008; Shipbuilder: ABG Shipyard Ltd., India; Owner: Precious Shipping Public Company Ltd., India.

Sample Projects – Commercial Ship Design

Main Characteristics: 7.500 m³ semi ref. LNG carrier, type 2G Length o. a.: 117.80 m Breadth = 18.60 m; Draught (LPG): 6,80 m Speed: 15.50 knots Number of cargo tanks: 2 Cargoes: LNG/LPG/Ethylene/Ammonia/VCM

7,500 cu. m. LNG/Ethylene/LPG Carrier

ICE's Scope: Classification: BV Steel structural classification drawings Piping diagrams & list of valves

Basic design for steel structure (ER & aft area)

Basic Design for Steel Structure, Piping – AutoCAD; Model Test (resistance and self-propulsion tests, wake measurements); Year: 2006-08; Client/Shipyard: Tractebel Marine Engineering Germany / Gdansk, Remontowa Shipyard, Poland; Owner/Operator: Anthony Veder Rotterdam, Netherlands.

Sample Projects – Commercial Ship Design

Double-acting Container Ship for Arctic Operations Detail Design & Production Information for Hull & Outfitting: TRIBON; Year: 2004 -05; Shipbuilder: Aker Ostsee, Aker Finnyards; Owner/Operator: Russian MMC Norilsk Nickel.

Sample Projects – Commercial Ship Design

Main Characteristics: LOA: 179.96 m; LPP: 172.00 m Breadth mld.: 32.20 m; Draught, design: 10.50 m Speed, service: 15 kn Crew: 31 persons Cargo tanks 47,776 m3 / 5 pairs (100%)

18

Classification: GL

Electrical Power Balance

4648/2	651E001	RevF

						-	-	Generators loading in diff, working conditions				_									
					At sea		to At sea with Manceuvre, Loading heating			ng Unisading		ading	g Emergency condifire		Emicy DG						
No	Consumer denomination	Pok.	Norrinal power. (Kw	Abs. Power (KM)	Loading coeff	Total power cons. [h	Simultaneth cost.	Constant cons. Power (KM)	Intermittent cons. Power (kW)	Constant cons. Power (kM)	Intermittent cons. Power (kMJ)	Constant cons. Power (NM)	Intermittent cons. Proves (MM)	Constant cons. Power (kM)	Internition1 com. Prover [kM/]	Constant cons. Power (kM)	Intermittent cons. Power (MM)	Constant cons. Power (kW)	Intermittent cons. Power (MV)	Constant cons. Power (KM)	Internitions cons.
0		2	3	4	5	.6	7	8	-9	10	11	12	13	14	15	18	17	18	19	20	21
03	ilectronic governor	1	12.6	14.8	0.7	10.4	1.0	0.0	10.4	0.0	10.4	8.0	10.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
1041	incinerator shadge tank	1	13,0	15,2	0,7	10,7	1,0	0,0	10,7	0,0		8,0	10,7	0.0	0,0	0,0	0,0	0,D	0,0	0,0	. 1
05	M) all'a fabricator	2	2.2	2,6	0.7	3,6	0.5	0.0	1,8	0,0	10,7	0.0	0,0	0.0	0,0	0.0	0,0	0,0	0.0	0.0	. (
06	riversing pe-tire biles beliest pe-	1	2.5	2.9	0.7	2.1	1.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0,0	0.0	0,0	0.0	2.5	0.0	(
107 2	Primming pump-bilgs-ballast pp	1	2,5	2,9	0,7	2,1	1,0	0,0	21	0,0	2,1	8,0	0,0	0.0	0,0	0,0	0,6	0,0	2,5	2,1	1
1080	ME prohesting water panet	1	2,5	2,9	0.7	2,1	1.0	0,0	2,1	0,0	2,1	0.0	2,1	0.0	0,0	0.0	0,0	2,1	0,0	0,0	1.1
109/	Ar orcky cleaning parag-	1	0.4	0.4	0.7	0.3	1.0	0,0	0.3	0.0	0,3	0.0	0,3	0.0	0,3	0.0	0,3	0.0	0,0	0.0	1
110	Greater separator	1	6,5	7,6	0.7	5.4	1.0	0,0	5,6	0,0	5,4	8,0	5,4	0.0	5,4	0.0	5,4	0.0	0,0	0,0	5
	Prinning enky for pump		2.5	2,8	0,7	2,1	1.0	0,0	0,0	0,0	0,0	0,0	9,9	0,0	0,0	0,0	0,0	0,0	0,9	0,0	
1	(etal constant consumers			_	_			. 0	-	्व	-	a		0		0		2	_	2,1	
1	l'etal intermittent, consumers					_	_		- 33		31		29		6	-	6		- 4		_
-	Ditto x 0:6 simm, factor		_	_		_	0.8		20		18		17		.3		3		2		
	TOTAL		_	_					20		18		17		- 3		-3	-	5	2.1	_
				-					_		-	-						_		_	
1	Diesel generator			3x91	3kW		-	. tx91	0kW	:2:01	0kW	2591	0×W	1,01	0×W	2,91	0kW	1x91	0kW	1x20	OKV
-	Loading coef	-		1/20	Thomas .		-		0.02		0,01	-	0,01	-	9,00	-	0,00	-	0.00	_	0,
	PLOTO THE PLOT THE PL	-		1/20	ana¥.		_	-	-	-	_		-	_	_	-	-	-	_	_	_

Oil/Chemical tanker IMO3 of 37,000/41,000 dwt (series of 23 vessels built) Conceptual, Model Testing, Basic Design, Detail Design and Prod. Info. for complete ship; Design system: TRIBON, AutoCAD; Year: 2003 - 2005 Shipbuilder: Constanta Shipyard, Romania; Owner/Operator: Histria Shipping, Romania.

Sample Projects - Defence

Mid-Shore Patrol Vessel Year: 2010 -11; Shipbuilder: Irving Shipbuilding Inc. (ISI) Halifax, Canada; Operator: Canadian Coast Guard

Sample Projects - Defence

20

T45 Destroyer Client: BAE Systems, UK

Ocean Patrol Vessel / Corvette Detail Design for Hull and Outfitting; Design system: TRIBON; Year: 2007-2008 Shipbuilder: VT – Shipbuilding ,UK Owner/Operator: Royal Navy for Oman

Offshore Patrol Vessel

Detail Design for Hull and Outfitting, incl. technical assistance on-site; Design system: TRIBON; Year: 2007-2008; Shipbuilder: VT – Shipbuilding , UK; Owner: Brazilian Navy

Sample Projects – Defence

65,000 tonnes at full displacement Length: 280m Beam: 70m Range: 8,000 to 10,000 nautical miles

21

The Queen Elizabeth Class Aircraft Carriers

Technical Assistance, Piping & Outfitting; Design system: TRIBON; Year: 2008 - 13 Client: BVT Surface Fleet Ltd., UK Owner/Operator: Royal Navy

Sample Projects – FSO / FPSO / FPU

40+ FSO/FPSO projects, drill ships, jack-ups, semis, etc.

Cidade de Vitoria FPSO – VLCC to FPSO Conversion Engineering for Saipem

Main Characteristics: LOA: 260.0 m Breadth mld.: 46.0 m Draught, design: 14,80 m Light ship displacement: 22595 t Deadweight: 124472 t

H2S Dispersion CFD Analysis:

- contours of H2S concentration on ship's external surfaces;
- path lines of the vented gases colored by H2S local concentration

Floating Storage and Offloading (FSO) vessel conversion Basic and detail design for conversion of a shuttle tanker to an FSO for operation in the Middle East; naval architecture, structural, piping, electrical Year: 2009; Client/Operator: Teekay, Norway.

25

Newbuilding semi -submersible drilling rig

Complete Detail engineering and production information for Columns and Pontoons Area

Thrusters Room (detail)

Building the hull of the first of the six drill ships at Kawasaki's facility in Sakaide.

AVEVA Global Concurrent Design by Multiple Teams

Management & Coordination

**AM Catalogues & specifications developed in Satellite 1 (Romania)

MARINE DESIGN

Sample Projects – WTI Vessels

• Wind Turbine Installation Vessels (WTI) for Seajacks International. *Class ABS*.

28

Completing basic design; 3-D model, all detail design and production information

Proprietary Designs (IP) – GFPSO Hulls & EWT Vessel

Early

	G-1600-SM FPSO	G-350-T FPSO	Extended Well Test and
Principal Dimensions			Production (EWT) Vesse
Length o.a.	308.25 m	182.10 m	241,65 m
Length b.p.	305.00 m	180.70 m	229.60 m
Breadth mld.	53.00 m	32.20 m	44.00 m
Depth mld.	29.10 m	19.90 m	22.00 m
Draught, design	21.81 m	14.00 m	14.50 m
Hull form: FPSO service tailo	r-made shape, double	side, single bottom	
EWT Vessel: Ship-	shaped, double side, d	ouble bottom	
Capacities			
Deadweight (design)	260.000 t	62.025 t	99.600 t
Crude Oil Overall Offloading	Capacity 1.600.000 bb	ol 350.000 bbl	500.000 bbl
Crude Oil Overall Storage Ca	pacity 1,750,000 bb	ol 370,000 bbl	550,000 bbl
Slop tanks	6,682 m3	2 x 619 m3	2 x 1,240 m3
Water ballast tanks	104,715 m3	32,455 m3	45,965 m3
Diesel Oil	7,765 m3	4,500 m3	10,713 m3
		ABC	ARC

Proprietary Designs (IP) – Liftboat

30

- Concept developed to meet requirements from a Middle East operator
- Further development being considered

Free Deck: 1,100 sq. m Variable Load: 1,700 t Working Water Depth: 65 m (max.)

Ongoing Projects – Japan

31

• KHI: Drill Ship – AVEVA Marine 3-D Model & Detail Design

32

 Floating Storage and Offloading ("FSO") vessel conversion design for Total E&P Norge's Martin Linge Development on the Norwegian Continental Shelf (ongoing 2017)

and Knutsen OAS of Norway.

Integrated Advanced Ship Design

33

ICE's 2016 Master Thesis "**Initial Design of a Ship shaped Self-Propelled Drill Ship**" was undertaken by **Güner Dönmez**, a graduate of Piri Reis University, Engineering Faculty in Turkey.

The thesis focussed on dynamical positioning and intact stability.

Thank you for your attention.

ENGINEERING CERTAINTY

International Contract Engineering Ltd. (ICE Group) | 19-21 Circular Road, Douglas, Isle of Man, British Isles | www.icedesign.info