

Corporate Overview

Fiorenzo Spadoni Yachting Sector Manager

Competence and Experience

OVER 150 YEARS OF EXPERIENCE

RINA provides certification, testing, inspection and consulting services across different sectors through a global network of 170 offices in 65 countries.

RINA is a member of key international organizations and an important contributor to the development of new legislative standards.

What is **RINA** today

LEVEL OF RINA PRESENCE

Our markets

SERVICES FOR: Industry Marine Transport & Certification Energy Infrastructure

Some figures

- 1.300 classed yachts
- > 30% market share
- 250 new projects worldwide

- 4 dedicated Plan Approval Centres:
- Italy, Turkey, China, UK + Hamburg

International Recognitions

- Certifying Authority for small commercial vessels (MCA, Malta..)
- Notified Organizations for EC directive 2013/53/EU, NMMA technical body
- Recognized organization by MCA for large commercial yachts
- Recognized by around 100 flag administrations

RINA rules pleasure standard

RINA Rules for yachts (private service)

- Different requirements according to size and material of construction
- Typical classification marking:
 - C № HULL; MACH; Y; Unrestricted navigation

RINA rules commercial standard

RINA Charter Class (commercial service)

- Requirements in line with MCA LY3
- Load Line and structural fire protection
- Typical classification marking:
 - C № HULL; № MACH; Ych; Unrestricted or Short Range navigation

FEM for The Comfort

- Global and local FEM structural direct calculations
- Natural frequency analysis with the added mass effect
- Forced Vibration Analyses in frequency domain
- Comparison of the results with the COMF-VIB requirements

Vibration prediction

Vibration prognosis:

- Global vibration analysis through finite element method (FEM), taking into account also the effects of the fluids through the added mass capability of the Nastran code
- Detailed local dynamic analysis by means of forced vibration response with refined (fine mesh) FEM model
- Whirling analyses of the shaft line

Vibration prediction

90m steel yacht Vibrations' hotspots

SEA - Introduction

- Statistical energy analysis is a method for studying diffusion of acoustic and vibration statistical energy term in a system
- The Energy is the primary response quantity of interest, Secondary variables such as displacement and pressure are found from vibration energy

Case study Hybrid local model

HYBRID COMPONENT MODEL

- Structures of the foundation where the fin actuator is fitted

SEA:

- Panel of the fin stabilizer compartment and surrounding panels of the hull

Glass surface critical item for COMFORT

Radiate Noise from Large Windows Glass (dominant tone)

Sonogram Sound Pressure Level inside cabin ISO-phone curves and airborne noise spectrum

ISO-phone curves and structural borne noise spectrum (windows)

Structural Integrity by FEM with Global Model

Structural Integrity by FEM with Global Model

Structural Integrity by FEM with Global Model

Fire Test Extension

Fringe Levels 7.270e-01 6.571e-01 5.871e-01 5.172e-01 4.472e-01 3.773e-01 3.074e-01 2.374e-01 1.675e-01 9.752e-02 2.758e-02 -4.236e-02 -1.123e-01 -1.823e-01 -2.522e-01 -3.221e-01 -3.921e-01 -4.620e-01 -5.320e-01

-6.019e-01

LS-DYNA keyword deck by LS-PrePost Time = 0

LS-DYNA keyword deck by LS-PrePost Time = 5400 Contours of Y-displacement min=-0.671858, at node# 129507 max=0.727018, at node# 129509

xty

Seakeeping

Seakeeping behaviour of the ship is assessed

- Evaluation of seakeeping behaviour by means of industry recognised ANSYS AQWA software
- Direct calculation of loads on particular hull shapes not covered by Rules formulae (for direct strength assessment)
- Evaluation of comfort related to seasickness
- Evaluation of ship motions, deck wetness index, pressure mapping
- Pool sloshing

Pressure mapping on the complete hull surface

Pressure mapping: particular on the bulbous bow

CFD studies

- Comfort-related airflow detailed analysis
- Thermal distribution
- Turbulence analysis and aerodynamic noise evaluation
- Detailed coupling of natural and forced airflow convection

Aerodynamic pressure and iso-dB turbulence-related noise

Airflow Streamlines around a ship deck

RINA RIG Rules: advanced tools

Inertial loads:

Structural assessment, RINA-Smar Azure software

- CFD + FEM integrated software
- "Dynamic" add-on for inertial loads
- Critical acceleration assessment

Results of Aerodynamic and Structural Analysis on Sails

THESIS PROPOSALS

1. NUMERICAL AND EXPERIMENTAL INVESTIGATION OF THE EFFECT OF VISCOELASTIC DAMPING MATERIALS

2. WHIRLING CALCULATION ON SUPERYACHT: CRITICAL PARAMETER INVESTIGATION AND SENSITIVITY ANALYSIS

Via Corsica, 12 - 16128 Genova - Italy P. +39 010 53851 | info@rina.org

rina.org

